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Abstract— In this paper, the very accurate and efficient modal
analysis of arbitrarily shaped wavguides, whose cross-section
is defined by a combination of straight, circular and/or ellip-
tical arcs, is solved. An extension of the well-known Bound-
ary Integral-Resonant Mode Expansion (BI-RME) method is
proposed. Successful comparisons with available numerical and

- experimental data fully demonstrates the validity of the improved
BI-RME method proposed.

I. INTRODUCTION

Arbitrary waveguides with a cross-section composed of lin-
ear, circular and/or elliptical arcs (see fig. 1) are usually present
in many passive waveguide devices [!]. For instance, ridge
rectangular or circular waveguides, as well as cross-shaped
irises, are frequently used in dual mode empty or dielectric
loaded resonator filters. In the same way, the presence of
rounded corners in rectangular waveguide passive components,
mainly due to the manufacturing techniques presently em-
ployed, is already being under investigation. Another example
of great practical use is the elliptical waveguide, which has
found increasing application in the design of many microwave
structures, such as dual and triple mode filters, circular
waveguide polarizers, twists and mode launchers, radiators,
resonators, and corrugated homs,

Nowadays, most of the CAD tools used in the design of
such components require to know, in a very accurate way, the
full-wave modal spectrum of the arbitrarily shaped waveguides
considered in this paper. Furthermore, the coupling integrals
between these modes and those of the standard rectangular
waveguide that fully encloses the arbitrary cross-section (see
Q in fig. 1) must also be known. Among the many methods
published in the literature to solve this problem, the BI-RME
method originally proposed in [2], [3] has become one of the
most popular ones, mainly due to its high speed and accuracy.

The BI-RME methods is based on the solution of an
Integral Equation by the Method of Moments, whose practical
implementation (see details in [2]) requires to subdivide the
boundary contour of the arbitrary waveguide (o in fig. 1).
Even though many efforts have been devoted to improve
the BI-RME technique in the last years (see [1], [4]), all

X

Fig. 1.  Arbitrary waveguide with cross section S embedded in a standard

rectangular waveguide (). Vector £ is tangent to o and { is a suitable abscisa
taken on the line.

the practical implementations of such technique subdivide
the arbitrary contour using only straight segments. In many
practical applications, e.g. when circular and/or elliptical arcs
are present, the aforementioned subdivision approach based
only on straight segments can lead to some errors in the results
provided by the BI-RME method. Furthermore, as indicated
in [3], such errors are even higher for the lower order modes
of the arbitrary waveguides, thus degrading the accuracy of
the modal analysis tools.

In this paper, an extension of the BI-RME method, based
on a subdivision of the arbitrary contours in rectangular,
circular and/or elliptical arcs, is proposed. Several practical
results confirming the improved accuracy related to this new
technique are offered.

II. IMPROVING THE TM PROBLEM

In order to compute the TM modes of an arbitrarily shaped
waveguide using the original BI-RME method described in [2],
the following matrix ¢lements must be cemputed

Ly :_/ULui(l)g(s,S’)uj(l’)dldl’

where the functions u; and u; are piecewise parabolic basis
and weighting functions related to the MoM. The domain of
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Fig. 2. Arbitrarily oriented straight segment with length Al.

these functions are the elements ¢ and 7 of o that can be
straight segments, circular arcs and/or elliptical arcs.

In (1), the double integral is computed numerically with a
Gauss quadrature rule, but this is not possible for the diagonal
elements of the I matrix (i.e. when i = j) because of the
singularity of g (the scalar Green function of a cylindrical
waveguide). A rapidly convergent expression for g is

1 x TlOTOI
9= 1 Z * ooTiT @
where
T = 1-2esg (- (F)W) ™ ()
Tmp = —{m7(~1)pm’+2am\% )

The singularity is introduced by the In 79° term when the field
point (z,y) approaches the source point (z',7’). This term
tends to infinity like In R. In order to treat this singularity, g
must be expanded as a Taylor series, and tak_mg into account
the following limit

00 2
lim 2T° 5= (E) 5
ze (2 —2') + (y—v) b
y—y

then, the green function can be split in the following way

1
=g —-—Ink 6
g=g—5-In (6)
where
1 TOO
= ——In=% 7
[/ 9o = 4 0 )
N oo S N L
% = 4 > I TOOTT1+—1 g7 (8)
m£0)

and the functions go and g, are regular everywhere.

Then, the singular part of the diagonal elements of I/ matrix
is analytically performed. Moreover, this analytic integration
is always done in the same limits (in the parameter interval
defined by ¢ € [—0.5,0.5]) to fully exploit the code.
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Fig. 3. Asbitrarily oriented circular arc with radius r and length rAgp.

A. Straight segments

For straight segments, the integration of the singular term
In R is straightforward. An arbitrary oriented straight segment
can be defined as foliows (see fig. 2)

z

Y

o+ (t+0.5)Al cosf
yo + (t + 0.5)Alsind )

Il

where t € [-0.5, 0.5] and the expression of In R is very simple

-2+ (y-y) = ] (10

and the singular integral can be solved immediately be-
cause the integration of parabolic functions u; multzplled by
In A2(t — t')? is analytically known.

In R? = = In [(z In [A*(t - ¢/

B. Circular arcs

Following the same procedure, a circular arc (see fig. 3) can
be defined as follows

T = xo+rcose(t)
= yo+ rsine(f) an
where
p(t) = @1+ Apt+0.5) (12)
Ay = p2—¢ (13)

where t € [—0.5,0.5] and 7 is the constant radius of the
circular arc. Here, taking into account the Taylor series of
R?, In R? can be decomposed in two parts

R2
InR?=In ————— 1 In [Agp?(t — t)? 14
because the first term of the r.h.s of (14) is regular
RZ
limln—s——— =1Inr? 15
e AP V) (15
y—y

With this last result, the regular term in (14) can be added
to the regular part of the Green function to be integrated
nurnerically, and the singular term of (14) can be integrated
analytically because it is similar to (10).
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Fig. 4. Arbitrarily oriented elliptic arc.

C. Elliptical arcs

Again, following the same procedure of the previous sec-
tions, an elliptic arc is defined. In this case, a local coordinate
system (u,v) has been chosen (see fig. 4), thus obtaining

w = acosq(t)
v = bsing(t) (1e)
where
n(t) = m+Ant+0.5)
An = m-—m amn

with ¢ € [-0.5,0.5].
(z,y) we obtain

z\ _ [z COS e
()= o)+ (6

and finally

Using the cartesian coordinate sysiem
—sina U

: 1
cos v ) (v) (18)

R? = a® [cos p(t) — cosn(t')}z + b [sinn(t) — sin 7,‘,(15’)]2
19
Now, taking into account the Taylor series of R?, In R? can
be decomposed in two parts

R2

2 _
InR*=1n ARG 1)

+1In [A?(t 2] (20)

because the first term of the rh.s part of (20) is regular
R2

lim In ———
IE»I:' nAnz(t—t’)z

¥y

= In [a? sin? 5(¢) + % cos? n{t)] 21

In this case, the singular term of (20) needs a further treatment
in order to obtain an analytical solution.

III. IMPROVING THE TE PROBLEM

For the TE problem, the singularities appear in the static
part of the bidimensional Green’s dyadic G,;, whose four
components are detailed in [2], and are of the same kind
solved before. Therefore, the same procedure described in the
previous section can be followed.

In the TE case, an additional problem appears when the
dyadic G, is expanded into a Taylor series, where the
following two terms are obtained

(z — o)
(-2 +y—v)°
{z -2y —v)
(z—2')? + (y—¢)*
which are not singular but discontinuous. This means that the
limit when the source point approaches the field point depends

on the approximation path. If we have three kinds of segments,
these limits must be properly calculated for each case,

® = 22)

v = (23)

A. Straight segments
If we use (9), the limits of (22) and (23) are easily calculated

Iim & = 24)
z—z’
vy

lim ¢ =
z—z’
y—=v

cos? @

1
B. Circular ares
In this case, using (11), the limits of ® and ¥ are
lim & = sin®[p(t)]

x—»»m”
y—=y

(26)

lim & =
x—ex:
y—y

C. Elliptical arcs
In this case, taking (16}, the limits of ® and ¥ are

[—a cos asinn(t) — bsin arcos p{t)]?

5 sin[2(t) e

lim & = 28
wil»l;: a2 sin” n(t) + b2 cos? (1) %)
y—y

. 1 x(t) sin 2a — absin 2n cos 2o

Im ¥ = = 29
Il_,Igf 2 aZsin? p(t) + b2 cos? n(t) @)
y—y

where .
x(t) = a° sin® n{t) — b cos® (1) 30

IV. RESULTS

This section presents some results that fully validate the
extension of the BI-RME method just described. Successful
comparisons with other available numerical and experimental
data are included.

A. The circular waveguide

In this example, we computeé the cutoff frequencies of
the TM modes of a circular waveguide, which is obtained
from a standard square contour (€2 in fig. 1) perturbed by
a tubular sheet (o in fig. 1). Table I compares the relative
errors of such cutoff frequencies for the classical BI-RME
appreach (using only straight segments) and the new extension
proposed (considering circular arcs). This benchmark test fully
demonstrates the accuracy improvement introduced by the BI-
RME extension proposed.
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TABLE 1
RELATIVE ERROR IN THE CUTOFF FREQUENCIES OF THE BI-RME
METHOD USING STRAIGHT SEGMENTS AND CIRCULAR ARCS.

Mode Error BI-RME Error BI-RME
(TM) (straight segments) | (circular segments)
TMo1 0.160 % 0.002 %
T™M11 0.206 % 0.009 %
TM12 0.207 % 0.004 %
TMg2 0.320 % 0.011 %
TM3; 0.439 % 0.013 %
TM;i2 0.585 % 0.015 %
TABLE 11

CUTOFF WAVENUMBERS USING BI-RME WITH ELLIPTICAL ARCS VERSUS
THE METHOD QUTLINED IN [6].

Mode ke ke Relative error
(TE/TM) ref, [6] (elliptical segments) (%)
TE 0.370200 0.370256 0.015
TE 0.422472 0.422540 0.016
™ 0.519355 0.519450 0.018
TE 0.644532 0.644830 0.04
TE 0.658631 0.659039 0.06
™ 0.797281 0.797679 0.04

B. The elliptical waveguide

Next, an elliptical waveguide defined within a rectangular
WR-90 waveguide has been considered. Here, o is an ellipse
of eccentricity equal to 0.5 and semi-major axis equal to
5mm. Table 11 successfully compares the cutoff wavenumbers
provided by this method with results from [6].

C. Filter analysis

As a final example of practical use, a four-pole inductively
coupled rectangular waveguide filter in with rounded corners
has been designed, manufictured and measured. The rounded
corners that usually appear in the manufacturing process
have been accurately considered using the extended BI-RME
method proposed in this paper. As can be seen in fig, 5, this
filter is composed of several pieces that can be manufactured
using low cost milling. Figure 6 shows a very good agreement
between simulated and measured results.

V. CONCLUSION

In this paper, an extension of the BI-RME method that can
handle straight, circular and elliptical segments in the dis-
cretization of arbitrary cross section waveguides is presented.
The validation of this extended technique has been carried
out with numerical and experimental results. Finally, this
method has been used in the design process of a rectangular
waveguide filter with rounded corners. The simulated results
have been successfully compared with measurements of a low
cost manmufactured prototype.

Fig. 5. Pieces of the four pole inductive filter with rounded corners.
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Fig. 6. Simulated and measured S-parameters of the four pole inductive filter
with rounded corners.
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