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Abstract-In this paper, tbe very accurate and efficient modal 
analysis of arbitrarily sbaped wavguides, whose cross-section 
is defined by a combination of straight, cimrlar and/or ellip- 
tical arcs, is solved. An extension of the well-known Bound- 
ary Integral-Resonant Mode Expansion (BI-RME) method is 
proposed. Successful comparisons with available numerical and 
experimental data fully demonstrates the validity of the improved 
BI-RME method proposed. 

I. INTRODUCTlON 

Arbitrary waveguides with a cross-section composed of 11;“. 
ear, circular and/or elliptical arcs (see fig. 1) arc usually present 
in many passive waveguide devices [I]. For instance, ridge 
rectangular or circular waveguides, as well as cross-shaped 
irises, are frequently used in dual mode empty or dielectric 
loaded resonator filters. In the same way, the presence of 
rounded comers in rectangular waveguide passive components, 
mainly due to the manufacturing techniques presently em- 
ployed, is already being under investigation. Another example 
,of great practical use is the elliptical waveguide, which has 
found increasing application in the design of many microwave 
stmctures, such as dual and triple mode filters, circular 
waveguide polarizers, twists and mode launchers, radiators, 
resonators, and corrugated horns. 

Nowadays, most of the CAD tools used in the design of 
such components require to know, in a very accurate way, the 
full-wave modal spectrum of the arbitrarily shaped waveguides 

considered in this paper. Futhennore, the coupling integrals 
between these modes and those of the standard rectangular 
waveguide that fully encloses the arbitrary cross-section (see 
12 in fig. 1) must also be known. Among the many methods 
published in the literature to solve this problem, the BI-F&W 
method originally proposed in [2], [3] has become one of the 
most popular ones, mainly due to its high speed and accuracy. 

The Bl-RME methods is based on the solution of an 
Integral Equation by the Method of Moments, whose practical 
implementation (see details in [2]) requires to subdivide the 
boundary contour of the arbitrary waveguide (u in fig. 1). 
Even though many efforts have been devoted to improve 
the BI-RME technique in the last years (see [l], [4]), all 

the practical implementations of such technique subdivide 
the arbitwy contour using only straight segments. In many 
practical applications, e.g. when circular and/or elliptical arcs 
arc present, the aforementioned subdivision approach based 
only on straight segments can lead to some errors in the results 
provided by the BI-RME method. Furthermore, as indicated 
in 151, such errors are even higher for the lower order modes 
of the arbitrary waveguides, thus degrading the accuracy of 
the modal analysis tools. 

In this paper, an extension of the BI-RME method, based 
on a subdivision of the arbitrary contours in rectangular, 
circular and/or elliptical arcs, is proposed. Several practical 
results confirming the improved accuracy related to this new 
technique are offered. 

II. hWROVINC THE TM PROBLEM 

In order to compute the TM modes of an arbitrarily shaped 
waveguide using the original BI-RME method described in 121, 
the following matrix elements must be computed Id: 

=: 
Li3 = 

JJ 
“~(z)g(s,S’)2L~(z’)dzdz’ (1) 

0 0 

where the functions uI and uj are piecewise parabolic basis 
and weighting functions related to the MOM. The domain of 
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Fig. 2. Arbitrarily oriented stnugbt segment with length Al. 

these functions are the elements i and j of 0 that can be 
straight segments, circular arcs and/or elliptical arcs. 

In (I), the double integral is computed numerically with a 
Gauss quadrature rule, but this is not possible for the diagonal 
elements of the L’ matrix (i.e. when i = j) because of the 
singularity of g (the scalar Green function of a cylindrical 
waveguide). A rapidly convergent expression for g is 

(2) 

where 

TPP = m 1 - 2e7ms cos ; (y ~ (-1)4y’) + e?** (3) 

Tmp = - 15 ~ (-l)% + 2ami ; (4) 

The singularity is introduced by the In T$’ term when the field 
point (z, y) approaches the source point (z’, y’). This term 
tends to infinity hke In R. In order to treat this singularity, g 
must be expanded as a Taylor series, and taking into account 
the following limit 

lim 
Tp 

;=;I (z ~ z’y + (y - y’) 
2 = (g)” (5) 

then, the green function can be split in the following way 

where 

g=gl-&l”R (6) 

91 = go-;,*g (7) 

90 = ; 5 I”$$+$“~ (8) 
m=--m m m 
(MO) 

and the functions go and g1 are regular everywhere. 
Then, the singular part of the diagonal elements of L’ matrix 

is analytically performed. Moreover, this analytic integration 
is always done in the same limits (in the parameter interval 
defined by t E [-0.5,0.5]) to fully exploit the code. 

For straight segments, the integration of the singular term 
In R is straightforward. An arbitrary oriented straight segment 
can be defined as follows (see fig. 2) 

z = zo + (t + 0.5)Al cosc3 

Y = yo + (t + 0.5)Alsine (9) 

where t E [-0.5,0.5] and the expression of 1nR is very simple 

InR’ = In [(z - .‘)’ + (y-y’)‘] = In [A?(t - t’)‘] (10) 

and the singular integral can be solved immediately be- 
cause the integration of parabolic functions U, multiplied by 
In AZ’(t - t’)2 is analytically known. 

B. Circular arcs 

Following the same procedure, a circular arc (see fig. 3) can 
be defined as follows 

where 

2 = qtrcosfp(t) 

Y = yo + T sin p(t) (11) 

p(t) = L~I + Ap(t +0.5) (12) 
A’p = 92 - Pl (13) 

where t E [-0.5,0.5] and T is the constant radius of the 
circular arc. Here, taking into account the Taylor series of 
R2, In R* can be decomposed in two parts 

l”R2 = I” A,scf: t,)2 + 1” [AP*@ - t’)‘] (14) 

because the first ten” of the r.h.s of (14) is regular 

lim In 
R2 

= l”? 
z+z” A&t - t’)2 

(15) 

F+Y’ 

Witb this lust result, the regular term in (14) can be added 
to the regular part of the Green function to be integrated 
numerically, and the singular term of (14) can be integrated 
analytically because it is similar to (IO). 



C. Elliptical arcs 

Again, following the same procedure of the previous sec- 
tions, an elliptic arc is defined. In this case, a local coordinate 
system (u, v) has been chosen (see fig. 4), thus obtaining 

11 = acosq(t) 

v = bsinq(t) (16) 

where 

q(t) = VI + Av(t +0.5) 

Av = m ~ 71 (17) 

with t E [-0.5,0.5]. Using the cartesian coordinate system 
(z, y) we obtain 

(;) = (;I) + (‘,E,” ,Z:). (:) (18) 

and finally 

R2 = a2 [cos q(t) - cosq(t’)]’ + bZ [sin q(t) ~ sin q(t')]" 

(19) 
Now, taking into account the Taylor series of R’, In RZ can 
be decomposed in two parts 

In R* = In Aqzc;: t,)2 + ‘n [A+@ - 02] (20) 

because the lint term of the r.h.s part of (20) is regular 

lim In 
R2 

D-Z’ A$(t - t')z 
= In [a’sin’~(t) + b’cos’q(t)] (21) 

v-d 

In this case, the singular term of (20) needs a further treatment 
in order to obtain an analytical solution. 

III. IMPROVING THE TE PROBLEM 

For the TE problem, the singularities appear in the static 
part of the bidimensional Green’s dyadic Gst, whose four 
components are detailed in [2], and are of the same kind 
solved before. Therefore, the same procedure described in the 
previous section can be followed. 

In the ‘IF case, an additional problem appears when the 
dyadic cst is expanded into a Taylor series, where the 
following two terms are obtained 

a = (x - x’)Z 
(z - cc’)2 + (y - yy 

(22) 

P = (x - aY - Y’) 
(z ~ .‘)2 + (y ~ y’)2 

(23) 

which are not singular but discontinuous. This means that the 
limit when the source point approaches the field point depends 
on the approximation path. If we have three kinds of segments, 
these limits must be properly calculated for each case. 

A. Straight segments 

If we use (9), the limits of (22) and (23) are easily calculated 

lim * = cos’6 (24) 
2-d 
1I-Y’ 

lim V = isin(20) (25) 
Z-Z’ 
U-Y’ 

Lt. Circular arcs 

In this case, using (I I), the limits of Q and I are 

lim @ = sin’[lp(t)] (26) 
2-d 
Y-Y’ 

lim * = -i sin[2+7(t)] (27) 
5-d 
Y-Y 

C. Elliptical arcs 

In this case, taking (16), the limits of @ and P are 

lim ~ = [-acosasinq(t) - bsinacosq(t)]’ (28) 

5-z’ 
?!-Y’ 

a2 sin’ q(t) + b2 co9 q(1) 

lim p = 1 x(t) sin 2cu - ab sin 27 cos 2a 
(7.9) 

5-5’ 2 
a)-Y’ 

a2 sin2 q(t) + b2 co9 q(t) 

where 
x(t) = a2 sin’ q(t) - b2 co? q(t) 

IV. RESULTS 

(30) 

This section presents some results that fully validate the 
extension of the BI-RME method just described. Successful 
comparisons with other available numerical and experimental 
data are included. 

A. Tke circular waveguide 

In this example, we compute the cutoff frequencies of 
the TM modes of a circular waveguide, which is obtained 
from a standard square contour (R in fig. 1) perturbed by 
a tubular sheet (CT in fig. I). Table I compares the relative 
el~ors of such cutoff frequencies for the classical BI-RME 
approach (using only straight segments) and the new extension 
proposed (considering circular arcs). This benchmark test fully 
demonstrates the accuracy improvement introduced by the BI- 
RME extension proposed. 
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TABLE II 
CUTOWWAVENUMBERS “S,NO Bt-RME WITH ELLIPTICAL ARCS VERSUS 

THE METHOD OUTLINED IN [61 

B. The elliptical waveguide 

Next, an elliptical waveguide defined within a rectangular 
M-90 waveguide has been considered. Here, D is an ellipse 
of eccentricity equal to 0.5 and semi-major axis equal to 
5mm. Table II successfully compares the cutoff wavenumbers 
provided by this method with results from [6]. 

C. Filter analysis 

As a final example of practical use, a four-pole inductively 
coupled rectangular waveguide filter in with rounded cowers 
has been designed, manuftictured and measured. The rounded 
corners that usually appear in the manufacturing process 
have been accurately considered using the extended BI-RME 
method proposed in this paper. As can be seen in fig. 5, this 
filter is composed of several pieces that can be manufactured 
using low cost milling. Figure 6 shows a very good agreement 
between simulated and measured’results. 

v. CoNCLUsroN 

In this paper, an extension of the BI-RME method that can 
handle straight, circular and elliptical segments in the dis- 
cretization of arbitrary cross section waveguides is presented. 
The validation of this extended technique has been carried 
out with numerical and experimental results. Finally, this 
method has been used in the design process of a rectangular 
waveguide filter with rounded corners. The simulated results 
have been successfully compared with measurements of a low 
cost manufactured prototype. 

Fig. 5. Pieces af the four pole inductive fitter with rounded comers. 
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